E-Mail: webmaster@mydatabook.org

Expansion of Series

Series Expansion

Polynomial Expansion Series

 (1 + x)^{a} = 1 + ax + \frac{a(a-1)}{2!}x^{2} + \frac{a(a-1)(a-2)}{3!}x^{3}+...\Rightarrow (where \left | x \right |<1)

Exponential Expansion Series

e^{x} = 1 + x + \frac{x^{2}}{2!}+...+\frac{x^{n}}{n!}+... \Rightarrow (where \left | x \right | <\infty )

Sine Expansion Series

sin(x) = x - \frac{x^{3}}{3!}+\frac{x^{5}}{5!}-...+(-1)^{n}\frac{x^{2n+1}}{(2n+1)!} \Rightarrow (\textup{where }\left | x \right | < \infty )

Cosine Expansion Series

cos(x) = 1 - \frac{x^{2}}{2!}+ \frac{x^{4}}{4!} -... + (-1)^{n} \frac{x^{2n}}{(2n)!} + ...\Rightarrow (where \left | x \right | <\infty )

Tangent Expansion Series

tan(x) = x + \frac{x^{3}}{3!}+ \frac{2x^{5}}{15!} + \frac{17x^{7}}{315!} + ...\Rightarrow (\textup{where }\frac{-\pi }{2}<x<\frac{\pi }{2} )

Hyperbolic Sine Expansion Series

sinh(x) = \frac{e^{x}-e^{-x}}{2} = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \frac{x^{7}}{7!} + ... \Rightarrow (\textup{where } \left | x \right | < \infty )

Hyperbolic Cosine Expansion Series

cosh(x) = \frac{e^{x}+e^{-x}}{2} = x + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \frac{x^{6}}{6!} + ... (\textup{where } \left | x \right | < \infty )

Natural Logarithm Expansion Series

ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - ... + (-1)^{n}\frac{x^{n+1}}{(n+1)} +... \Rightarrow (\textup{where }-1 < x \leq 1)

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close